Thalidomide Inhibits TGF-β1-induced Epithelial to Mesenchymal Transition in Alveolar Epithelial Cells via Smad-Dependent and Smad-Independent Signaling Pathways

沙利度胺通过 Smad 依赖性和 Smad 非依赖性信号通路抑制 TGF-β1 诱导的肺泡上皮细胞上皮-间质转化

阅读:8
作者:Xian-Long Zhou, Peng Xu, Hai-Hua Chen, Yan Zhao, Jun Shen, Cheng Jiang, Shan Jiang, Shao-Zhou Ni, Bing Xu, Lei Li

Abstract

Recent evidence indicates that the epithelial to mesenchymal transition (EMT) in primary alveolar cells (AECs) plays an important role in idiopathic pulmonary fibrosis (IPF). In vivo models have suggested that thalidomide (THL) has anti-fibrotic effects against pulmonary fibrosis, but the underlying mechanism of this effect is not clear. This study investigated whether THL regulates alveolar EMT and the possible mechanisms underlying this process. CCL-149 cells were treated with TGF-β1 in the presence of THL at the indicated concentrations. EMT was assessed by changes in cell morphology and in phenotypic markers. Signaling pathways involved in EMT were characterized by western blot analysis. THL inhibited the TGF-β1 induction of α-SMA, vimentin, MMP-2/-9 and collagen type IV expression and restored the morphological changes in primary alveolar epithelial cells caused by TGF-β1. TGF-β1 induction of α-SMA expression was partially dependent on the activation of p38, JNK, ERK, Akt, Smad 2 and Smad3. Moreover, THL inhibited TGF-β1-induced phosphorylation of p38, JNK, ERK, Akt, GSK3β, Smad 2 and Smad3 without altering the total expression levels of those proteins. These findings indicate that TGF-β1-induced EMT in alveolar epithelial cells is inhibited by THL via both Smad-dependent and non-Smad-dependent signaling pathways and suggests therapeutic approaches for targeting this process in pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。