Prior endurance exercise prevents postprandial lipaemia-induced increases in reactive oxygen species in circulating CD31+ cells

先前的耐力训练可防止餐后脂血症引起的循环 CD31+ 细胞中活性氧的增加

阅读:5
作者:Nathan T Jenkins, Rian Q Landers, Sunny R Thakkar, Xiaoxuan Fan, Michael D Brown, Steven J Prior, Espen E Spangenburg, James M Hagberg

Abstract

We hypothesized that prior exercise would prevent postprandial lipaemia (PPL)-induced increases in intracellular reactive oxygen species (ROS) in three distinct circulating angiogenic cell (CAC) subpopulations. CD34(+), CD31(+)/CD14(-)/CD34(-), and CD31(+)/CD14(+)/CD34(-) CACs were isolated from blood samples obtained from 10 healthy men before and 4 h after ingesting a high fat meal with or without ∼50 min of prior endurance exercise. Significant PPL-induced increases in ROS production in both sets of CD31(+) cells were abolished by prior exercise. Experimental ex vivo inhibition of NADPH oxidase activity and mitochondrial ROS production indicated that mitochondria were the primary source of PPL-induced oxidative stress. The attenuated increases in ROS with prior exercise were associated with increased antioxidant gene expression in CD31(+)/CD14(-)/CD34(-) cells and reduced intracellular lipid uptake in CD31(+)/CD14(+)/CD34(-) cells. These findings were associated with systemic cardiovascular benefits of exercise, as serum triglyceride, oxidized low density lipoprotein-cholesterol, and plasma endothelial microparticle concentrations were lower in the prior exercise trial than the control trial. In conclusion, prior exercise completely prevents PPL-induced increases in ROS in CD31(+)/CD14(-)/CD34(-) and CD31(+)/CD14(+)/CD34(-) cells. The mechanisms underlying the effects of exercise on CAC function appear to vary among specific CAC types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。