EIF4A3 stabilizes the expression of lncRNA AGAP2-AS1 to activate cancer-associated fibroblasts via MyD88/NF-κb signaling

EIF4A3 稳定 lncRNA AGAP2-AS1 的表达,通过 MyD88/NF-κb 信号传导激活癌症相关成纤维细胞

阅读:5
作者:Qingqing Xu, Tingting Zhao, Honghao Han, Jiahao Fan, Weiping Xie

Background

Lung cancer (LC) is a fatal malignancy and often accompanied with converting normal fibroblasts to cancer-associated fibroblasts (CAFs). Exosomal lncRNA AGAP2-AS1 has been elucidated to be a potent prognostic factor for LC, while its role in activating CAFs is largely unknown.

Conclusions

The positive feedback of EIF4A3/AGAP2-AS1/MyD88/NF-κB signaling pathway contributed to the activation of CAFs and exacerbated LC in turn, revealing a novel regulatory axis underlying LC.

Methods

We first extracted exosomes from LC patients and co-cultured them with MRC5 cells to observe the state of MRC5 cells, detect AGAP2-AS1 using real-time quantitative polymerase chain reaction, and then analyze the interaction between EIF4A3 and AGAP2-AS1 using RNA pull down experiments. CCK-8 assay was used to detect cell proliferation. Transwell experiments demonstrated the regulation of MRC5 cells and, finally, the role of MyD88/NF-κB in the downstream mechanism of EIF4A3/AGAP2-AS1 was explored by RNA interference technology and pyrrolidinedithiocarbamic acid inhibition.

Results

We demonstrated that exosomes from the LC patients (cancer-exo) notably increased the metastatic ability of MRC-5 cells, promoting the expressions of the CAF biomarkers and lncRNA AGAP2-AS1. Overexpression of lncRNA AGAP2-AS1 prominently activated MRC-5 cells. Moreover, EIF4A3 was upregulated in the cancer-exo-treated MRC-5 cells, and EIF4A3 was verified to bind with lncRNA AGAP2-AS1 to improve its stability. The MyD88/NF-κB signaling pathway was subsequently proved to be positively regulated by lncRNA AGAP2-AS1, and the promotive role of lncRNA AGAP2-AS1 in LC and activating CAFs was confirmed in vivo. Conclusions: The positive feedback of EIF4A3/AGAP2-AS1/MyD88/NF-κB signaling pathway contributed to the activation of CAFs and exacerbated LC in turn, revealing a novel regulatory axis underlying LC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。