Therapeutic role of Artemether in the prevention of hepatic steatosis through miR-34a-5p/PPARα pathway

蒿甲醚通过miR-34a-5p/PPARα通路防治脂肪肝的治疗作用

阅读:6
作者:Li Chen, Shuang Yu, Shubing Hong, Xia Lin, Xiaonan Zhu, Xiaopei Cao, Yanbing Li, Haipeng Xiao

Abstract

Artemether (ATM) is a natural antimalarial drug that can also regulate glucose and lipid metabolism. However, little is known regarding its pharmacological action in metabolic dysfunction-associated fatty liver disease (MAFLD), and the underlying mechanisms remain undetermined. The aim of this study was to explore the therapeutic effects of ATM against hepatic steatosis and the possible mechanisms. ATM significantly decreased blood glucose levels, improved glucose tolerance, reduced inflammatory response, and alleviated hepatic steatosis in the ob/ob mouse model as well as the high-fat diet-fed mice. ATM also inhibited lipid accumulation in murine hepatocytes in vitro. Using RNA sequencing, miR-34a-5p and peroxisome proliferator-activated receptor-α (PPARα) were identified as important regulators during ATM treatment. ATM administration downregulated miR-34a-5p expression and miR-34a-5p abrogated the inhibitory effects of ATM on PO (palmitate + oleate)-induced lipid accumulation as well as triglycerides levels in murine hepatocytes. Furthermore, the expression of PPARα, a target gene of miR-34a-5p, was upregulated by ATM and PPARα inhibitor MK-886 abolished the positive effect of ATM. Consequently, PPARα agonist fenofibrate reversed the decreased mitochondrial fatty acid β-oxidation induced by miR-34a-5p mimics after ATM treatment, thereby leading to attenuation of intracellular lipid accumulation. Taken together, ATM is a promising therapeutic agent against MAFLD that reduces lipid deposition by suppressing miR-34a-5p and upregulating PPARα.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。