MicroRNA-191-5p diminished sepsis-induced acute kidney injury through targeting oxidative stress responsive 1 in rat models

MicroRNA-191-5p 通过靶向氧化应激反应 1 减轻大鼠模型中脓毒症引起的急性肾损伤

阅读:5
作者:Yi Qin, Guizhen Wang, Zhiyong Peng

Abstract

There is no effective treatment for septic acute kidney injury (AKI), which is considered a major public health concern in today's world. Here, we studied the functions of miR-191-5p in septic AKI. MiR-191-5p mimic or mimic control was injected into rats from caudal vein before cecal ligation and puncture (CLP) surgery. Part of kidney tissues was stained by Hematoxylin and Eosin (H&E) for histological examination. The levels of serum cytokines were evaluated using enzyme-linked immunosorbent assay (ELISA). For cell transfection, renal cells were isolated from the kidneys of CLP rat model injected with mimic control and miR-191-5p mimic. With TargetScan prediction, serine/threonine-protein kinase OSR1 was identified as a target of miR-191-5p. Oxidative stress responsive 1 (OXSR1) overexpression vector was transfected into renal cells. Cell viability and apoptosis rate were determined by Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. We additionally measured the phosphorylation levels of p38 and p65. We found that the injection of miR-191-5p mimic could observably inhibit renal injury scores, and inhibit inflammatory cytokine productions and apoptotic protein levels in septic rats. After being transfected with OXSR1, the apoptosis rates and expressions of B-cell lymphoma-2 (Bcl-2), down-regulated Bax and Cleaved caspase-3 (C caspase-3) indicated overexpressed OXSR1 contributed to cell apoptosis. The up-regulated protein levels of p-p38 and p-p65 may suggest the involvement of p38 MAPK/NF-κB signaling pathway in the functions of OXSR1. Our results showed that the protective effects of miR-191-5p on kidney tissues of septic rats may rely on the repression of OXSR1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。