RasGRF1 regulates the hypothalamic-pituitary-adrenal axis specifically in early-adolescent female mice

RasGRF1 专门调节青春期早期雌性小鼠的下丘脑-垂体-肾上腺轴

阅读:5
作者:Belkis Gizem Uzturk, Shan-Xue Jin, Beverly Rubin, Christopher Bartolome, Larry A Feig

Abstract

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the induction and prolongation of a variety of psychiatric disorders. As such, much effort has been made to understand the molecular mechanisms involved in its control. However, the vast majority of the studies on the HPA axis have used adult animals, and among these the majority has used males. Here we show that in knockout mice lacking the guanine nucleotide exchange factor, RasGRF1, habituation to 30 min/day of restraint stress is markedly accelerated, such that these mice do not display elevated corticosterone levels or enhanced locomotion after 7 days of stress exposure, like WT mice do. Strikingly, this phenotype is present in early-adolescent female RasGRF1 knockout mice, but not in their early-adolescent male, mid-adolescent female, adult female or adult male counterparts. Moreover, not only is there a clear response to restraint stress in early-adolescent female RasGRF1 knockout mice, their response after one, three and five exposures is magnified approximately threefold compared to WT mice. These findings imply that distinct mechanisms exist to regulate the HPA axis in early-adolescent females that involves RasGRF1. A full understanding of how RasGRF1 controls the HPA axis response to stress may be required to design effective strategies to combat stress-associated psychiatric disorders initiated in young females.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。