C60Br24/SWCNT: A Highly Sensitive Medium to Detect H2S via Inhomogeneous Carrier Doping

C60Br24/SWCNT:通过非均匀载体掺杂检测 H2S 的高灵敏度介质

阅读:4
作者:Jin Zhou, Mohammad Bagheri, Topias Järvinen, Cora Pravda Bartus, Akos Kukovecz, Hannu-Pekka Komsa, Krisztian Kordas

Abstract

H2S is a toxic and corrosive gas, whose accurate detection at sub-ppm concentrations is of high practical importance in environmental, industrial, and health safety applications. Herein, we propose a chemiresistive sensor device that applies a composite of single-walled carbon nanotubes (SWCNTs) and brominated fullerene (C60Br24) as a sensing component, which is capable of detecting 50 ppb H2S even at room temperature with an excellent response of 1.75% in a selective manner. In contrast, a poor gas response of pristine C60-based composites was found in control measurements. The experimental results are complemented by density functional theory calculations showing that C60Br24 in contact with SWCNTs induces localized hole doping in the nanotubes, which is increased further when H2S adsorbs on C60Br24 but decreases in the regions, where direct adsorption of H2S on the nanotubes takes place due to electron doping from the analyte. Accordingly, the heterogeneous chemical environment in the composite results in spatial fluctuations of hole density upon gas adsorption, hence influencing carrier transport and thus giving rise to chemiresistive sensing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。