A Tonoplast Sugar Transporter Underlies a Sugar Accumulation QTL in Watermelon

液泡膜糖转运蛋白是西瓜糖积累 QTL 的基础

阅读:5
作者:Yi Ren, Shaogui Guo, Jie Zhang, Hongju He, Honghe Sun, Shouwei Tian, Guoyi Gong, Haiying Zhang, Amnon Levi, Yaakov Tadmor, Yong Xu

Abstract

How sugar transporters regulate sugar accumulation in fruits is poorly understood and particularly so for species storing high-concentration Suc. Accumulation of soluble sugars in watermelon (Citrullus lanatus) fruit, a major quality trait, had been selected during domestication. Still, the molecular mechanisms controlling this quantitative trait are unknown. We resequenced 96 recombinant inbred lines, derived from crossing sweet and unsweet accessions, to narrow down the size of a previously described sugar content quantitative trait locus, which contains a putative Tonoplast Sugar Transporter gene (ClTST2). Molecular and biochemical analyses indicated that ClTST2 encodes a vacuolar membrane protein, whose expression is associated with tonoplast uptake and accumulation of sugars in watermelon fruit flesh cells. We measured fruit sugar content and resequenced the genomic region surrounding ClTST2 in 400 watermelon accessions and associated the most sugar-related significant single-nucleotide polymorphisms (SNPs) to the ClTST2 promoter. Large-scale population analyses strongly suggest increased expression of ClTST2 as a major molecular event in watermelon domestication associated with a selection sweep around the ClTST2 promoter. Further molecular analyses explored the binding of a sugar-induced transcription factor (SUSIWM1) to a sugar-responsive cis-element within the ClTST2 promoter, which contains the quantitative trait locus (QTL) causal SNP. The functional characterization of ClTST2 and its expression regulation by SUSIWM1 provide novel tools to increase sugar sink potency in watermelon and possibly in other vegetable and fruit crops.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。