Clobetasol propionate enhances neural stem cell and oligodendrocyte differentiation

丙酸氯倍他索增强神经干细胞和少突胶质细胞分化

阅读:5
作者:Wentao Shi, Shiqi Bi, Yao Dai, Kaiyuan Yang, Youfa Zhao, Zhijian Zhang

Abstract

Clobetasol propionate (Clo) is a potent topical glucocorticoid and a potential remyelinating agent that has been approved by the U.S. Food and Drug Administration. However, the effect of Clo on neural stem cells (NSCs) remains largely unknown. The aim of the present study was to investigate the effect of Clo on the differentiation of NSCs in vitro. NSCs were isolated from mouse embryonic brain tissues and expanded in vitro. The effect of Clo on NSC viability was examined using an MTT assay. Differentiating NSCs were treated with 5 or 10 µM Clo, or with DMSO control, and the degree of differentiation was examined following culture in stem cell differentiation induction medium for 7 days. The effect of Clo on NSC differentiation was assessed using immunocytochemistry and western blot analyses. The results revealed that Clo significantly increased NSC viability compared with the DMSO control group. Treatment with Clo also significantly increased the number of NSCs that differentiated into growth associated protein 43 positive neurons and corresponding axon lengths were also significantly increased. In addition, treatment with Clo significantly increased the number of myelin basic protein positive oligodendrocytes and decreased the number of glial fibrillary acidic protein positive astrocytes. Furthermore, inhibition of the sonic hedgehog and AMP-activated protein kinase signaling pathways inhibited Clo-induced NSC differentiation, and treatment with Clo upregulated the expression of several neurotrophic factors. In conclusion, the results of the current study suggest that Clo may have a potential therapeutic benefit in neurological disorders affecting oligodendrocytes and neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。