Identification of differentially expressed genes and preliminary validations in cardiac pathological remodeling induced by transverse aortic constriction

主动脉缩窄引起心脏病理重塑的差异表达基因鉴定及初步验证

阅读:6
作者:Hui-Bo Wang, Rong Huang, Kang Yang, Man Xu, Di Fan, Ming-Xin Liu, Si-Hui Huang, Li-Bo Liu, Hai-Ming Wu, Qi-Zhu Tang

Abstract

Cardiac remodeling predisposes to heart failure if the burden is unresolved, and heart failure is an important cause of mortality in humans. The aim of the present study was to identify the key genes involved in cardiac pathological remodeling induced by pressure overload. Gene expression profiles of the GSE5500, GSE18224, GSE36074 and GSE56348 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs), defined as |log2FC|>1 (FC, fold change) and an adjusted P‑value of <0.05, were screened using the R software with the limma package. Gene ontology enrichment analysis was performed and a protein‑protein interaction (PPI) network of the DEGs was constructed. A cardiac remodeling model induced by transverse aortic constriction (TAC) was established. Furthermore, consistent DEGs were further validated using reverse transcription‑quantitative polymerase chain reaction (RT‑PCR) analysis, western blotting and immunohistochemistry in the ventricular tissue samples after TAC or sham operation. A total of 24 common DEGs were identified (23 significantly upregulated and 1 downregulated), of which 9 genes had been previously confirmed to be directly involved in cardiac remodeling. Hence, the level of expression of the other 15 genes was detected in subsequent studies via RT‑PCR. Based on the results of the PPI network analysis and RT‑PCR, we further detected the protein levels of Itgbl1 and Asporin, which were consistent with the results of bioinformatics analysis and RT‑PCR. The expression of Itgbl1, Aspn, Fstl1, Mfap5, Col8a1, Ltbp2, Mfap4, Pamr1, Cnksr1, Aqp8, Meox1, Gdf15 and Srpx was found to be upregulated in a mouse model of cardiac remodeling, while that of Retnla was downregulated. Therefore, the present study identified the key genes implicated in cardiac remodeling, aiming to provide new insight into the underlying mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。