Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings

比较转录组和代谢分析揭示了自噬抑制剂 3-MA 增强小麦幼苗盐胁迫敏感性的机制

阅读:8
作者:Jieyu Yue, Yingjie Wang, Jinlan Jiao, Huazhong Wang

Background

Salt stress hinders plant growth and production around the world. Autophagy induced by salt stress helps plants improve their adaptability to salt stress. However, the underlying mechanism behind this adaptability remains unclear. To obtain deeper insight into this phenomenon, combined metabolomics and transcriptomics analyses were used to explore the coexpression of differentially expressed-metabolite (DEM) and gene (DEG) between control and salt-stressed wheat roots and leaves in the presence or absence of the added autophagy inhibitor 3-methyladenine (3-MA).

Conclusion

3-MA enhanced the salt stress sensitivity of wheat seedlings by inhibiting the activity of the roots and leaves, inhibiting autophagy in the roots and leaves, increasing the content of both H2O2 and O2•-, damaged photosynthesis apparatus and changing the transcriptome and metabolome of salt-stressed wheat seedlings.

Results

The results indicated that 3-MA addition inhibited autophagy, increased ROS accumulation, damaged photosynthesis apparatus and impaired the tolerance of wheat seedlings to NaCl stress. A total of 14,759 DEGs and 554 DEMs in roots and leaves of wheat seedlings were induced by salt stress. DEGs were predominantly enriched in cellular amino acid catabolic process, response to external biotic stimulus, regulation of the response to salt stress, reactive oxygen species (ROS) biosynthetic process, regulation of response to osmotic stress, ect. The DEMs were mostly associated with amino acid metabolism, carbohydrate metabolism, phenylalanine metabolism, carbapenem biosynthesis, and pantothenate and CoA biosynthesis. Further analysis identified some critical genes (gene involved in the oxidative stress response, gene encoding transcription factor (TF) and gene involved in the synthesis of metabolite such as alanine, asparagine, aspartate, glutamate, glutamine, 4-aminobutyric acid, abscisic acid, jasmonic acid, ect.) that potentially participated in a complex regulatory network in the wheat response to NaCl stress. The expression of the upregulated DEGs and DEMs were higher, and the expression of the down-regulated DEGs and DEMs was lower in 3-MA-treated plants under NaCl treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。