Clinical Analysis of Pediatric Acute Megakaryocytic Leukemia With CBFA2T3-GLIS2 Fusion Gene

儿童急性巨核细胞白血病CBFA2T3-GLIS2融合基因临床分析

阅读:10
作者:Yu Du, Li Yang, Shanshan Qi, Zhi Chen, Ming Sun, Min Wu, Bin Wu, Fang Tao, Hao Xiong

Abstract

CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in non-Down syndrome acute megakaryocytic leukemia (AMKL), which is associated with extremely poor clinical outcome. The presence of this fusion gene is associated with resistance to high-intensity chemotherapy, including hematopoietic stem cell transplantation (HSCT), and a high cumulative incidence of relapse frequency. The clinical features and clinical effects of China Children's Leukemia Group-acute myeloid leukemia (AML) 2015/2019 regimens and haploidentical HSCT (haplo-HSCT) for treatment of 6 children harboring the CBFA2T3-GLIS2 fusion gene between January 2019 and December 2021 were retrospectively analyzed. The 6 patients included 4 boys and 2 girls with a median disease-onset age of 19.5 months (range: 6-67 mo) who were diagnosed with AMKL. Flow cytometry demonstrated CD41a, CD42b, and CD56 expression and lack of HLA-DR expression in all 6 patients. All the children were negative for common leukemia fusion genes by reverse transcription polymerase chain reaction, but positive for the CBFA2T3-GLIS2 fusion gene by next-generation sequencing and RNA sequencing. All patients received chemotherapy according to China Children's Leukemia Group-AML 2015/2019 regimens, and 4 achieved complete remission. Four children underwent haplo-HSCT with posttransplant cyclophosphamide-based conditioning; 3 had minimal residual disease negative (minimal residual disease <0.1%) confirmed by flow cytometry at the end of the follow-up, with the remaining patient experiencing relapse at 12 months after transplantation. Transcriptome RNA sequencing is required for the detection of the CBFA2T3-GLIS2 fusion gene and for proper risk-based allocation of pediatric patients with AML in future clinical strategies. Haplo-HSCT with posttransplant cyclophosphamide-based conditioning may improve survival in children with AMKL harboring the fusion gene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。