Asiaticoside ameliorates renal ischemia/reperfusion injury by promoting CD4+CD25+FOXP3+ treg cell differentiation

积雪草苷通过促进 CD4+CD25+FOXP3+treg 细胞分化改善肾缺血/再灌注损伤

阅读:6
作者:Shengjie Tang, Xiangcheng Xie, Ming Wang, Wei Wei

Abstract

Ischemia/reperfusion injury (I/R) is the major cause of acute kidney injury, which becomes a global health problem. The effects of asiaticoside, as an anti-inflammatory drug, on renal ischemia-reperfusion injury have not been well defined. After the CD4+ cells were treated with asiaticoside, the CD4+CD25+FOXP3+ Treg cell differentiation was detected by flow cytometry. The viability and release of inflammatory factors of CD4+CD25+FOXP3+ Treg cell were detected by CCK-8 and ELISA. Renal I/R injury mice model was established, and the mice were pre-treated with asiaticoside or CD25 antibody or infused with Treg cells. The histological changes of renal tissue were evaluated by Hematoxylin-eosin, PAS, and Masson staining. The renal function markers were evaluated by colorimetry, the release of inflammatory factors was determined by ELISA. The Th17 and Treg cells in the blood and spleen were quantified by flow cytometry. The expressions of FOXP3 and RoR-γt in renal tissues were determined by western blotting. Asiaticoside promoted CD4+CD25+FOXP3+ Treg cell differentiation, increased the cell viability and down-regulated TNF-α, IL-1β, and IL-6, while up-regulated IL-10 of CD4+CD25+FOXP3+ Treg cells. Moreover, asiaticoside ameliorated the histological damage, decreased the Th17 cells and increased Treg cells, and down-regulated the TNF-α, IL-1β, IL-6, blood urea nitrogen, serum creatinine, and RoR-γt, while up-regulated IL-10 and FOXP3 of renal I/R injury mice. Effect of asiaticoside on renal I/R injury mice was reversed by CD25 antibody whose role was further reversed by Treg cell infusing. In conclusion, asiaticoside ameliorated renal I/R injury due to promoting CD4+CD25+FOXP3+ Treg cell differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。