Temporally distinct transcriptional regulation of myocyte dedifferentiation and Myofiber growth during muscle regeneration

肌肉再生过程中肌细胞去分化和肌纤维生长的时间上不同的转录调控

阅读:4
作者:Ke'ale W Louie, Alfonso Saera-Vila, Phillip E Kish, Justin A Colacino, Alon Kahana

Background

Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration.

Conclusions

Reprogramming of a "post-mitotic" myocyte into a dedifferentiated myoblast requires a complex coordinated effort that reshapes the cellular proteome and rewires metabolic pathways mediated by heritable yet nuanced epigenetic alterations and molecular switches, including transcription factors and non-coding RNAs. Our studies show that temporal regulation of gene expression is programmatically linked to distinct steps in the regeneration process, with immediate early expression driving dedifferentiation and reprogramming, and later expression facilitating anatomical regeneration.

Results

Following subtotal excision of adult zebrafish lateral rectus muscle, dedifferentiating residual myocytes were collected at two time points prior to cell cycle reentry and compared to uninjured muscles using RNA-seq. Functional annotation (GAGE or K-means clustering followed by GO enrichment) revealed a coordinated response encompassing epigenetic regulation of transcription, RNA processing, and DNA replication and repair, along with protein degradation and translation that would rewire the cellular proteome and metabolome. Selected candidate genes were phenotypically validated in vivo by morpholino knockdown. Rapidly induced gene products, such as the Polycomb group factors Ezh2 and Suz12a, were necessary for both efficient dedifferentiation (i.e. cell reprogramming leading to cell cycle reentry) and complete anatomic regeneration. In contrast, the late activated gene fibronectin was important for efficient anatomic muscle regeneration but not for the early step of myocyte cell cycle reentry. Conclusions: Reprogramming of a "post-mitotic" myocyte into a dedifferentiated myoblast requires a complex coordinated effort that reshapes the cellular proteome and rewires metabolic pathways mediated by heritable yet nuanced epigenetic alterations and molecular switches, including transcription factors and non-coding RNAs. Our studies show that temporal regulation of gene expression is programmatically linked to distinct steps in the regeneration process, with immediate early expression driving dedifferentiation and reprogramming, and later expression facilitating anatomical regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。