Defect in phosphoinositide signalling through a homozygous variant in PLCB3 causes a new form of spondylometaphyseal dysplasia with corneal dystrophy

PLCB3 纯合变异导致的磷酸肌醇信号传导缺陷,导致一种新型脊椎干骺端发育不良,并伴有角膜营养不良

阅读:5
作者:Salma Ben-Salem, Sarah M Robbins, Nara Lm Sobreira, Angeline Lyon, Aisha M Al-Shamsi, Barira K Islam, Nadia A Akawi, Anne John, Pramathan Thachillath, Sania Al Hamed, David Valle, Bassam R Ali, Lihadh Al-Gazali

Background

Bone dysplasias are a large group of disorders affecting the growth and structure of the skeletal system.

Conclusions

Our results connect a homozygous loss of function variant in PLCB3 with a new SMD associated with corneal dystrophy and developmental delay (SMDCD).

Methods

In the present study, we report the clinical and molecular delineation of a new form of syndromic autosomal recessive spondylometaphyseal dysplasia (SMD) in two Emirati first cousins. They displayed postnatal growth deficiency causing profound limb shortening with proximal and distal segments involvement, narrow chest, radiological abnormalities involving the spine, pelvis and metaphyses, corneal clouding and intellectual disability. Whole genome homozygosity mapping localised the genetic cause to 11q12.1-q13.1, a region spanning 19.32 Mb with ~490 genes. Using whole exome sequencing, we identified four novel homozygous variants within the shared block of homozygosity. Pathogenic variants in genes involved in phospholipid metabolism, such as PLCB4 and PCYT1A, are known to cause bone dysplasia with or without eye anomalies, which led us to select PLCB3 as a strong candidate. This gene encodes phospholipase C β 3, an enzyme that converts phosphatidylinositol 4,5 bisphosphate (PIP2) to inositol 1,4,5 triphosphate (IP3) and diacylglycerol.

Results

The identified variant (c.2632G>T) substitutes a serine for a highly conserved alanine within the Ha2' element of the proximal C-terminal domain. This disrupts binding of the Ha2' element to the catalytic core and destabilises PLCB3. Here we show that this hypomorphic variant leads to elevated levels of PIP2 in patient fibroblasts, causing disorganisation of the F-actin cytoskeleton. Conclusions: Our results connect a homozygous loss of function variant in PLCB3 with a new SMD associated with corneal dystrophy and developmental delay (SMDCD).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。