Dysregulated coordination of MAPT exon 2 and exon 10 splicing underlies different tau pathologies in PSP and AD

MAPT 外显子 2 和外显子 10 剪接的失调协调是 PSP 和 AD 中不同 tau 病理的基础

阅读:6
作者:Kathryn R Bowles, Derian A Pugh, Laura-Maria Oja, Benjamin M Jadow, Kurt Farrell, Kristen Whitney, Abhijeet Sharma, Jonathan D Cherry, Towfique Raj, Ana C Pereira, John F Crary, Alison M Goate

Abstract

Understanding regulation of MAPT splicing is important to the etiology of many nerurodegenerative diseases, including Alzheimer disease (AD) and progressive supranuclear palsy (PSP), in which different tau isoforms accumulate in pathologic inclusions. MAPT, the gene encoding the tau protein, undergoes complex alternative pre-mRNA splicing to generate six isoforms. Tauopathies can be categorized by the presence of tau aggregates containing either 3 (3R) or 4 (4R) microtubule-binding domain repeats (determined by inclusion/exclusion of exon 10), but the role of the N-terminal domain of the protein, determined by inclusion/exclusion of exons 2 and 3 has been less well studied. Using a correlational screen in human brain tissue, we observed coordination of MAPT exons 2 and 10 splicing. Expressions of exon 2 splicing regulators and subsequently exon 2 inclusion are differentially disrupted in PSP and AD brain, resulting in the accumulation of 1N4R isoforms in PSP and 0N isoforms in AD temporal cortex. Furthermore, we identified different N-terminal isoforms of tau present in neurofibrillary tangles, dystrophic neurites and tufted astrocytes, indicating a role for differential N-terminal splicing in the development of disparate tau neuropathologies. We conclude that N-terminal splicing and combinatorial regulation with exon 10 inclusion/exclusion is likely to be important to our understanding of tauopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。