MicroRNA-506 has a suppressive effect on the tumorigenesis of nonsmall-cell lung cancer by regulating tubby-like protein 3

MicroRNA-506通过调控tubby样蛋白3对非小细胞肺癌的肿瘤发生有抑制作用

阅读:5
作者:Zhan-Hua Li, Ji-Hong Zhou, Si-Ning Chen, Ling Pan, Yuan Feng, Mei-Qun Luo, Rui-Xiang Li, Gui-Li Sun

Abstract

MicroRNA-506 (miR-506), a miRNA, has been proven to act as a tumor suppressor gene in nonsmall-cell lung cancer (NSCLC); Tubby-like protein 3 (TULP3) is a potential target gene of miR-506. This study investigates whether miR-506 can prevent NSCLC progression by mediating TULP3. In vivo and in vitro experiments were performed to explore the function and potential regulatory relationship of miR-506 and TULP3 in NSCLC. Our results revealed that miR-506 is high expression in NSCLC cell lines, and the overexpression of miR-506 could inhibit cell viability and enhance cell apoptosis in H1299 and A549 cells. Pro-apoptotic related protein (cytochrome C, Bax, and cleaved caspase-9) expression increased while anti-apoptotic related protein (BCL-2 and BCL-XL) expression decreased after miR-506 was overexpression. Meanwhile, the overexpression of miR-506 could notably downregulate TULP3. Additionally, silence of TULP3 inhibited cell viability and promoted cell apoptosis. At the same time, pro-apoptotic related protein expression was promoted while anti-apoptotic related protein expression was inhibited. Furthermore, TULP3 overexpression could markedly reverse the inhibitory effect of miR-506 on the proliferation and induction of mitochondrial apoptosis in H1299 and A549 cells. In vivo tumor formation experiments also exhibited consistent results indicating that the functions of TULP3 might be correlated with the promotion of tumorigenesis. In conclusion, we firstly found that miR-506 can be involved in the processes of NSCLC and exert a suppressive effect on tumorigenesis by regulating TULP3 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。