Identification of TbPBN1 in Trypanosoma brucei reveals a conserved heterodimeric architecture for glycosylphosphatidylinositol-mannosyltransferase-I

布氏锥虫中 TbPBN1 的鉴定揭示了糖基磷脂酰肌醇-甘露糖基转移酶-I 的保守异二聚体结构

阅读:5
作者:Andrew Cowton, Peter Bütikofer, Robert Häner, Anant K Menon

Abstract

Glycosylphosphatidylinositol (GPI)-anchored proteins are found in all eukaryotes and are especially abundant on the surface of protozoan parasites such as Trypanosoma brucei. GPI-mannosyltransferase-I (GPI-MT-I) catalyzes the addition of the first of three mannoses that make up the glycan core of GPI. Mammalian and yeast GPI-MT-I consist of two essential subunits, the catalytic subunit PIG-M/Gpi14 and the accessory subunit PIG-X/Pbn1(mammals/yeast). T. brucei GPI-MT-I has been highlighted as a potential antitrypanosome drug target but has not been fully characterized. Here, we show that T. brucei GPI-MT-I also has two subunits, TbGPI14 and TbPBN1. Using TbGPI14 deletion, and TbPBN1 RNAi-mediated depletion, we show that both proteins are essential for the mannosyltransferase activity needed for GPI synthesis and surface expression of GPI-anchored proteins. In addition, using native PAGE and co-immunoprecipitation analyses, we demonstrate that TbGPI14 and TbPBN1 interact to form a higher-order complex. Finally, we show that yeast Gpi14 does not restore GPI-MT-I function in TbGPI14 knockout trypanosomes, consistent with previously demonstrated species specificity within GPI-MT-I subunit associations. The identification of an essential trypanosome GPI-MT-I subcomponent indicates wide conservation of the heterodimeric architecture unusual for a glycosyltransferase, leaving open the question of the role of the noncatalytic TbPBN1 subunit in GPI-MT-I function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。