Effect of Substrate symmetry on the dendrite morphology of MoS2 Film synthesized by CVD

基底对称性对CVD制备MoS2薄膜枝晶形貌的影响

阅读:6
作者:Di Wu, Tai Min, Jian Zhou, Chen Li, Guobin Ma, Gaotian Lu, Minggang Xia, Zhengbin Gu

Abstract

In van der Waals epitaxial growth, the substrate plays a particularly important role in the crystal morphology. Here, we synthesized MoS2 by chemical vapour deposition on silicon carbide (SiC). The obtained MoS2 dendritic crystals show six-fold symmetry, which are different from the conventional triangular shapes on SiO2 substrate and from those with three-fold symmetry on SrTiO3 substrate. Interestingly, these MoS2 dendritic crystals on SiC exhibit an average fractal dimension 1.76, which is slightly larger than the classical Diffusion-limited-Aggregation fractal dimension 1.66. The first principle calculation indicates that the six-fold symmetry of the dendritic MoS2 is determined by the lattice symmetry of SiC. To further demonstrating the substrate effect, we break the natural six-fold lattice symmetry of SiC (0001) into groove arrays through etching the substrate. And then we successfully synthesized cross-type dendritic crystal MoS2 with two-fold symmetry. Its average fractal dimension 1.83 is slightly larger than the fractal dimension 1.76 of the previous MoS2 dendrite with six-fold symmetry. In a word, the symmetry of SiC substrate determined the symmetry and the fractal dimension of the dendritic MoS2. This work provides one possibility of inducing the growth orientation of dendritic crystals through controlling the substrate surface symmetry artificially.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。