Chlorine disinfection elevates the toxicity of polystyrene microplastics to human cells by inducing mitochondria-dependent apoptosis

氯消毒通过诱导线粒体依赖性细胞凋亡增强聚苯乙烯微塑料对人体细胞的毒性

阅读:5
作者:Jing Qin, Peng-Fei Xia, Xian-Zheng Yuan, Shu-Guang Wang

Abstract

Microplastics (MPs) are ubiquitous in drinking water and pose potential threats to human health. Despite increasingly attentions on the toxicity of MPs, the deleterious effects of MPs after chlorine disinfection, which might be a more accessible form of MPs, has rarely been considered. Here, we first treated pristine polystyrene microplastics (PS-MPs) with chlorine to simulate the reactions that occur during drinking water treatment, and investigated and compared the cytotoxicity of chlorinated PS-MPs to those of pristine PS-MPs. Chlorine disinfection did not change the size of pristine PS-MPs, but increased the surface roughness. In addition, abundant carbon-chlorine bonds and persistent free radicals were generated on the surface of chlorinated PS-MPs. Compared with pristine PS-MPs, chlorinated PS-MPs markedly inhibited the cell proliferation, changed cellular morphology, destroyed cell membrane integrity, induced cell inflammatory response and apoptosis. Proteomics confirmed the difference in interactions with intracellular proteins between these particles. Furthermore, we found that the regulation of PI3K/AKT and Bcl-2/Bax pathways, oxidative stress-triggered mitochondrial depolarization, and the activation of caspase cascade were identified as the underlying mechanisms for the enhanced apoptosis ratio in GES-1 cells when exposed to chlorinated PS-MPs. This exacerbated cytotoxicity could be explained by the enhanced surface roughness and changed surface chemistry of these PS-MPs after chlorine disinfection. This work discloses the impacts of chlorine disinfection on the cytotoxicity of PS-MPs, which provides new insights for a more systematic risk assessment of MPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。