Ethylacetate extract from Tetrastigma hemsleyanum induces apoptosis via the mitochondrial caspase-dependent intrinsic pathway in HepG2 cells

四柱树的乙酸乙酯提取物通过线粒体 caspase 依赖的内在途径诱导 HepG2 细胞凋亡

阅读:8
作者:Xin Peng, Yuan-Yuan Zhang, Jin Wang, Qingyong Ji

Abstract

Ethylacetate extract of Tetrastigma hemsleyanum (EET) has a potent antitumor activity in vitro and in vivo. However, the molecular mechanism underlying EET-induced apoptosis remains elusive. As part of our continuing studies, we investigated the apoptosis mechanism of HepG2 cells exposed to different concentrations of EET in vitro. Confocal laser scanning was used to detect the apoptotic morphological changes. Flow cytometer and inverted fluorescence microscope were used to detect the mitochondrial membrane potential and cytosolic Ca(2+) level. Western blotting analysis was used to evaluate the expression of the apoptosis-related proteins. Annexin V/PI staining was used to investigate cell apoptosis. Spectrophotometry was used to detect the activity of caspase family. The results showed that distinct apoptotic morphological changes occurred in HepG2 cells treated by EET. EET caused collapse of mitochondrial membrane potential, elevation of cytosolic Ca(2+) level, and evoked release of cytochrome c from mitochondria in a concentration-dependent manner. The apoptosis was accompanied by a significant activation of caspase-3, caspase-9, and the cleavage of poly (ADP-ribose) polymerase, but there was no significant change in either the activity or the expression level of caspase-8. Furthermore, EET-induced apoptosis could be inhibited by caspase-9 inhibitor Z-LEHD-FMK but not by caspase-8 inhibitor Z-IETD-FMK. Taken together, these overall results demonstrated that EET-induced apoptosis of HepG2 cells was mediated by the mitochondrial caspase-dependent intrinsic pathway rather than the death receptor/caspase-8-mediated signaling route.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。