A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation-contraction coupling in the mouse heart

神经元钠通道 NaV1.6 的无效突变会破坏小鼠心脏的动作电位传播和兴奋-收缩耦合

阅读:8
作者:Sami F Noujaim, Kuljeet Kaur, Michelle Milstein, Julie M Jones, Philip Furspan, Daniel Jiang, David S Auerbach, Todd Herron, Miriam H Meisler, José Jalife

Abstract

Evidence supports the expression of brain-type sodium channels in the heart. Their functional role, however, remains controversial. We used global Na(V)1.6-null mice to test the hypothesis that Na(V)1.6 contributes to the maintenance of propagation in the myocardium and to excitation-contraction (EC) coupling. We demonstrated expression of transcripts encoding full-length Na(V)1.6 in isolated ventricular myocytes and confirmed the striated pattern of Na(V)1.6 fluorescence in myocytes. On the ECG, the PR and QRS intervals were prolonged in the null mice, and the Ca(2+) transients were longer in the null cells. Under patch clamping, at holding potential (HP) = -120 mV, the peak I(Na) was similar in both phenotypes. However, at HP = -70 mV, the peak I(Na) was smaller in the nulls. In optical mapping, at 4 mM [K(+)](o), 17 null hearts showed slight (7%) reduction of ventricular conduction velocity (CV) compared to 16 wild-type hearts. At 12 mM [K(+)](o), CV was 25% slower in a subset of 9 null vs. 9 wild-type hearts. These results highlight the importance of neuronal sodium channels in the heart, whereby Na(V)1.6 participates in EC coupling, and represents an intrinsic depolarizing reserve that contributes to excitation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。