Synaptic cell-adhesion molecule latrophilin-2 is differentially directed to dendritic domains of hippocampal neurons

突触细胞粘附分子 latrophilin-2 对海马神经元树突状结构域有差异

阅读:5
作者:Thomas R Murphy, Ryan F Amidon, Jordan D Donohue, Libo Li, Garret R Anderson

Abstract

Hippocampal pyramidal cells possess elaborate dendritic arbors with distinct domains that are targeted with input-specific synaptic sites. This synaptic arrangement is facilitated by synaptic cell-adhesion molecules that act as recognition elements to connect presynaptic and postsynaptic neurons. In this study, we investigate the organization of the synaptic recognition molecule latrophilin-2 at the surface of pyramidal neurons classified by spatial positioning and action potential firing patterns. Surveying two hippocampal neurons that highly express latrophilin-2, late-bursting CA1 pyramidal cells and early-bursting subiculum pyramidal cells, we found the molecule to be differentially positioned on their respective dendritic compartments. Investigating this latrophilin-2 positioning at the synaptic level, we found that the molecule is not present within either the pre- or postsynaptic terminal but rather is tightly coupled to synapses at a perisynaptic location. Together these findings indicate that hippocampal latrophilin-2 distribution patterning is cell-type specific, and requires multiple postsynaptic neurons for its synaptic localization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。