Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC)

获得功能性 STAT1 突变会损害慢性皮肤黏膜念珠菌病 (CMC) 患者的 STAT3 活性

阅读:6
作者:Jie Zheng, Frank L van de Veerdonk, Katherine L Crossland, Sanne P Smeekens, Chun M Chan, Tariq Al Shehri, Mario Abinun, Andrew R Gennery, Jelena Mann, Dennis W Lendrem, Mihai G Netea, Andrew D Rowan, Desa Lilic

Abstract

Signal transducer and activator of transcription 3 (STAT3) triggered production of Th-17 cytokines mediates protective immunity against fungi. Mutations affecting the STAT3/interleukin 17 (IL-17) pathway cause selective susceptibility to fungal (Candida) infections, a hallmark of chronic mucocutaneous candidiasis (CMC). In patients with autosomal dominant CMC, we and others previously reported defective Th17 responses and underlying gain-of-function (GOF) STAT1 mutations, but how this affects STAT3 function leading to decreased IL-17 is unclear. We also assessed how GOF-STAT1 mutations affect STAT3 activation, DNA binding, gene expression, cytokine production, and epigenetic modifications. We excluded impaired STAT3 phosphorylation, nuclear translocation, and sequestration of STAT3 into STAT1/STAT3 heterodimers and confirm significantly reduced transcription of STAT3-inducible genes (RORC/IL-17/IL-22/IL-10/c-Fos/SOCS3/c-Myc) as likely underlying mechanism. STAT binding to the high affinity sis-inducible element was intact but binding to an endogenous STAT3 DNA target was impaired. Reduced STAT3-dependent gene transcription was reversed by inhibiting STAT1 activation with fludarabine or enhancing histone, but not STAT1 or STAT3 acetylation with histone deacetylase (HDAC) inhibitors trichostatin A or ITF2357. Silencing HDAC1, HDAC2, and HDAC3 indicated a role for HDAC1 and 2. Reduced STAT3-dependent gene transcription underlies low Th-17 responses in GOF-STAT1 CMC, which can be reversed by inhibiting acetylation, offering novel targets for future therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。