TGF-β1/SMOC2/AKT and ERK axis regulates proliferation, migration, and fibroblast to myofibroblast transformation in lung fibroblast, contributing with the asthma progression

TGF-β1/SMOC2/AKT 和 ERK 轴调节肺成纤维细胞的增殖、迁移和成纤维细胞向肌成纤维细胞的转化,从而促进哮喘的进展

阅读:5
作者:Yuebin Wang, Huike Yang, Xian Su, Anqiang Cao, Feng Chen, Peng Chen, Fangtao Yan, Huirong Hu

Background

Asthma is a common chronic respiratory disease that influences 300 million people all over the world. However, the pathogenesis of asthma has not been fully elucidated. It has been reported that transforming growth factor-β (TGF-β) can activate myofibroblasts. Moreover, the fibroblast to myofibroblast transformation (FMT) can be triggered by TGF-β, which is a major mediator of subepithelial fibrosis. Secreted modular calcium-binding protein 2 (SMOC2) is a member of cysteine (SPARC) family and is involved in the progression of multiple diseases. However, its role in asthma remains poorly understood. RT-qPCR evaluated the expression of SMOC2. Bromodeoxyuridine assay and wound-healing assay detected the proliferation and migration of lung fibroblasts, respectively. IF staining was performed to assess the expression of α-smooth muscle actin (α-SMA). Western blot analysis detected the levels of proteins. Flow cytometry was utilized for determination of the number of myofibroblasts.

Conclusions

This work demonstrated that SMOC2 modulated TGF-β1-induced proliferation, migration and FMT in lung fibroblasts and may promote asthma, which potentially provided a novel therapeutic target for the management of asthma.

Results

We found the expression of SMOC2 was upregulated by the treatment of TGF-β1 in lung fibroblasts. In addition, SMOC2 promoted the proliferation and migration of lung fibroblasts. More importantly, SMOC2 accelerated FMT of lung fibroblasts. Furthermore, SMOC2 was verified to control the activation of AKT and ERK. Rescue assays showed that the inhibition of AKT and ERK pathway reversed the promoting effect of SMOC2 overexpression on proliferation, migration and FMT in lung fibroblasts. Conclusions: This work demonstrated that SMOC2 modulated TGF-β1-induced proliferation, migration and FMT in lung fibroblasts and may promote asthma, which potentially provided a novel therapeutic target for the management of asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。