Transmembrane thioredoxin-related protein TMX1 is reversibly oxidized in response to protein accumulation in the endoplasmic reticulum

跨膜硫氧还蛋白相关蛋白 TMX1 因内质网中的蛋白质积累而发生可逆氧化

阅读:5
作者:Yoshiyuki Matsuo, Kiichi Hirota

Abstract

Numerous secretory and membrane proteins undergo post-translational modifications in the endoplasmic reticulum (ER), and the formation of disulfide bonds is a modification that is critical for proper protein folding. The mammalian ER contains a large family of oxidoreductases that are considered to catalyze thiol/disulfide exchange and ensure the maintenance of a redox environment within the ER. Disruption of ER homeostasis causes an accumulation of misfolded and unfolded proteins, a condition termed ER stress. Despite advances in our understanding of the ER stress response and its downstream signaling pathway, it remains unclear how ER redox balance is controlled and restored in the stressed ER. In this study, we determined that brefeldin A (BFA)-induced protein accumulation in the ER triggers reversible oxidation of transmembrane thioredoxin-related protein 1 (TMX1). Conversion of TMX1 to the oxidized state preceded the induction of immunoglobulin-binding protein, a downstream marker of ER stress. Oxidized TMX1 reverted to the basal reduced state after BFA removal, and our results suggest that glutathione is involved in maintaining TMX1 in the reduced form. These findings provide evidence for a redox imbalance caused by protein overload, and demonstrate the existence of a pathway that helps restore ER homeostasis during poststress recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。