Jun dimerization protein 2 controls hypoxia-induced replicative senescence via both the p16Ink4a-pRb and Arf-p53 pathways

Jun 二聚化蛋白 2 通过 p16Ink4a-pRb 和 Arf-p53 通路控制缺氧诱导的复制性衰老

阅读:6
作者:Koji Nakade, Chang-Shen Lin, Xiao-Yu Chen, Ming-Ho Tsai, Kenly Wuputra, Zhi-Wei Zhu, Jian-Zhi Pan, Kazunari K Yokoyama

Abstract

The main regulators of replicative senescence in mice are p16Ink4a and Arf, inhibitors of cell cycle progression. Jun dimerization protein 2 (JDP2)-deficient mouse embryonic fibroblasts are resistant to replicative senescence through recruitment of the Polycomb repressive complexes 1 and 2 to the promoter of the gene that encodes p16Ink4a and inhibits the methylation of lysine 27 of the histone H3 locus. However, whether or not JDP2 is able to regulate the chromatin signaling of either p16Ink4a-pRb or Arf-p53, or both, in response to oxidative stress remains elusive. Thus, this study sought to clarify this point. We demonstrated that the introduction of JDP2 leads to upregulation of p16Ink4a and Arf and decreases cell proliferation in the presence of environmental (20% O2), but not in low (3% O2) oxygen. JDP2-mediated growth suppression was inhibited by the downregulation of both p16Ink4a and Arf. Conversely, the forced expression of p16Ink4a or Arf inhibited cell growth even in the absence of JDP2. The downregulation of both the p53 and pRb pathways, but not each individually, was sufficient to block JDP2-dependent growth inhibition. These data suggest that JDP2 induces p16Ink4a and Arf by mediating signals from oxidative stress, resulting in cell cycle arrest via both the p16Ink4a-pRb and Arf-p53 pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。