The Neuroprotective Effects of Necrostatin-1 on Subarachnoid Hemorrhage in Rats Are Possibly Mediated by Preventing Blood-Brain Barrier Disruption and RIP3-Mediated Necroptosis

Necrostatin-1 对大鼠蛛网膜下腔出血的神经保护作用可能是通过防止血脑屏障破坏和 RIP3 介导的坏死性凋亡来实现的

阅读:3
作者:Jingsen Chen, Hanghuang Jin, Hangzhe Xu, Yucong Peng, Liyong Jie, Demin Xu, Lili Chen, Tao Li, Linfeng Fan, Pingyou He, Guangyu Ying, Chi Gu, Chun Wang, Lin Wang, Gao Chen

Abstract

Despite the substantial efforts to elucidate the role of early brain injury in subarachnoid hemorrhage (SAH), an effective pharmaceutical therapy for patients with SAH continues to be unavailable. This study aims to reveal the role of necroptosis after SAH, and explore whether the disruption of the blood-brain barrier (BBB) and RIP3-mediated necroptosis following SAH in a rat SAH model are altered by necrostatin-1 via its selective inhibition of receptor-interacting protein kinase 1 (RIP1). Sixty-five rats were used in the experiments. The SAH model was established using endovascular perforation. Necrostatin-1 was intracerebroventricularly injected 1 h before SAH induction. The neuroprotective effects of necrostatin-1 were evaluated with multiple methods such as magnetic resonance imaging (MRI) scanning, immunohistochemistry, propidium iodide (PI) labeling, and western blotting. Pretreatment with necrostatin-1 attenuated brain swelling and reduced the lesion volume on T2 sequence and ventricular volume on MRI 72 h after SAH induction. Albumin leakage and the degradation of tight junction proteins were also ameliorated by necrostatin-1 administration. In addition, necrostatin-1 decreased the number of PI-positive cells in the basal cortex, reduced the levels of the RIP3 and MLKL proteins, and inhibited the production of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Based on the findings from the present study, the selective RIP1 inhibitor necrostatin-1 functioned as a neuroprotective agent after SAH by attenuating brain swelling and BBB disruption. Moreover, the necrostatin-1 pretreatment prevented SAH-induced necroptosis by suppressing the activity of the RIP3/MLKL signaling pathway. These results will provide insights into new drugs and pharmacological targets to manage SAH, which are worth further study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。