Cannabinoid CB(2) receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide

大麻素 CB(2) 受体调节细菌脂多糖刺激的小胶质细胞中的 ERK-1/2 激酶信号传导和 NO 释放

阅读:5
作者:Stefania Merighi, Stefania Gessi, Katia Varani, Carolina Simioni, Debora Fazzi, Prisco Mirandola, Pier Andrea Borea

Background and purpose

Cannabinoid (CB) receptor agonists have potential utility as anti-inflammatory drugs in chronic immune inflammatory diseases. In the present study, we characterized the signal transduction pathways affected by CB(2) receptors in quiescent and lipopolysaccharide (LPS)-stimulated murine microglia. Experimental approach: We examined the effects of the synthetic CB(2) receptor ligand, JWH-015, on phosphorylation of MAPKs and NO production. Key

Purpose

Cannabinoid (CB) receptor agonists have potential utility as anti-inflammatory drugs in chronic immune inflammatory diseases. In the present study, we characterized the signal transduction pathways affected by CB(2) receptors in quiescent and lipopolysaccharide (LPS)-stimulated murine microglia. Experimental approach: We examined the effects of the synthetic CB(2) receptor ligand, JWH-015, on phosphorylation of MAPKs and NO production. Key

Results

Stimulation of CB(2) receptors by JWH-015 activated JNK-1/2 and ERK-1/2 in quiescent murine microglial cells. Furthermore, CB(2) receptor activation increased p-ERK-1/2 at 15 min in LPS-stimulated microglia. Surprisingly, this was reduced after 30 min in the presence of both LPS and JWH-015. The NOS inhibitor L-NAME blocked the ability of JWH-015 to down-regulate the LPS-induced p-ERK increase, indicating that activation of CB(2) receptors reduced effects of LPS on ERK-1/2 phosphorylation through NO. JWH-015 increased LPS-induced NO release at 30 min, while at 4 h CB(2) receptor stimulation had an inhibitory effect. All the effects of JWH-015 were significantly blocked by the CB(2) receptor antagonist AM 630 and, as the inhibition of CB(2) receptor expression by siRNA abolished the effects of JWH-015, were shown to be mediated specifically by activation of CB(2) receptors. Conclusions and implications: Our results demonstrate that CB(2) receptor stimulation activated the MAPK pathway, but the presence of a second stimulus blocked MAPK signal transduction, inhibiting pro-inflammatory LPS-induced production of NO. Therefore, CB(2) receptor agonists may promote anti-inflammatory therapeutic responses in activated microglia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。