Cell type-specific manipulation with GFP-dependent Cre recombinase

利用 GFP 依赖的 Cre 重组酶进行细胞类型特异性操作

阅读:8
作者:Jonathan C Y Tang, Stephanie Rudolph, Onkar S Dhande, Victoria E Abraira, Seungwon Choi, Sylvain W Lapan, Iain R Drew, Eugene Drokhlyansky, Andrew D Huberman, Wade G Regehr, Constance L Cepko

Abstract

There are many transgenic GFP reporter lines that allow the visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. We developed a method that exploits GFP for gene manipulation, Cre recombinase dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, which led to effective recombination selectively in GFP-labeled cells. Furthermore, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP(+) cells, we found that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。