Cricket paralysis virus internal ribosome entry site-derived RNA promotes conventional vaccine efficacy by enhancing a balanced Th1/Th2 response

蟋蟀麻痹病毒内部核糖体进入位点衍生的 RNA 通过增强平衡的 Th1/Th2 反应来促进常规疫苗的效力

阅读:7
作者:Hye Won Kwak, Hyo-Jung Park, Hae Li Ko, Hyelim Park, Min Ho Cha, Sang-Myeong Lee, Kyung Won Kang, Rhoon-Ho Kim, Seung Rok Ryu, Hye-Jung Kim, Jae-Ouk Kim, Manki Song, Hun Kim, Dae Gwin Jeong, Eui-Cheol Shin, Jae-Hwan Nam

Abstract

An ideal adjuvant should increase vaccine efficacy through balanced Th1/Th2 responses and be safe to use. Recombinant protein-based vaccines are usually formulated with aluminum (alum)-based adjuvants to ensure an adequate immune response. However, use of alum triggers a Th2-biased immune induction, and hence is not optimal. Although the adjuvanticity of RNA has been reported, a systematic and overall investigation on its efficacy is lacking. We found that single strand RNA (termed RNA adjuvant) derived from cricket paralysis virus intergenic region internal ribosome entry site induced the expression of various adjuvant-function-related genes, such as type 1 and 2 interferon (IFN) and toll-like receptor (TLR), T cell activation, and leukocyte chemotaxis in human peripheral blood mononuclear cells; furthermore, its innate and IFN transcriptome profile patterns were similar to those of a live-attenuated yellow fever vaccine. This suggests that protein-based vaccines formulated using RNA adjuvant function as live-attenuated vaccines. Application of the RNA adjuvant in mouse enhanced the efficacy of Middle East respiratory syndrome spike protein, a protein-subunit vaccine and human papillomavirus L1 protein, a virus-like particle vaccine, by activating innate immune response through TLR7 and enhancing pAPC chemotaxis, leading to a balanced Th1/Th2 responses. Moreover, the combination of alum and the RNA adjuvant synergistically induced humoral and cellular immune responses and endowed long-term immunity. Therefore, RNA adjuvants have broad applicability and can be used with all conventional vaccines to improve vaccine efficacy qualitatively and quantitively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。