Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia

蛋白激酶 C Epsilon 是急性髓系白血病中线粒体氧化还原稳态的关键调节剂

阅读:5
作者:Daniela Di Marcantonio, Esteban Martinez, Simone Sidoli, Jessica Vadaketh, Margaret Nieborowska-Skorska, Anushk Gupta, Jake M Meadows, Francesca Ferraro, Elena Masselli, Grant A Challen, Michael D Milsom, Claudia Scholl, Stefan Fröhling, Siddharth Balachandran, Tomasz Skorski, Benjamin A Garcia, Pri

Conclusions

This study uncovers a previously unrecognized role for PKCε in supporting AML cell survival and disease progression by regulating mitochondrial ROS biology and positions mitochondrial redox regulators as potential therapeutic targets in AML. Clin Cancer Res; 24(3); 608-18. ©2017 AACR.

Purpose

The intracellular redox environment of acute myeloid leukemia (AML) cells is often highly oxidized compared to healthy hematopoietic progenitors and this is purported to contribute to disease pathogenesis. However, the redox regulators that allow AML cell survival in this oxidized environment remain largely unknown.Experimental Design: Utilizing several chemical and genetically-encoded redox sensing probes across multiple human and mouse models of AML, we evaluated the role of the serine/threonine kinase PKC-epsilon (PKCε) in intracellular redox biology, cell survival and disease progression.

Results

We show that RNA interference-mediated inhibition of PKCε significantly reduces patient-derived AML cell survival as well as disease onset in a genetically engineered mouse model (GEMM) of AML driven by MLL-AF9. We also show that PKCε inhibition induces multiple reactive oxygen species (ROS) and that neutralization of mitochondrial ROS with chemical antioxidants or co-expression of the mitochondrial ROS-buffering enzymes SOD2 and CAT, mitigates the anti-leukemia effects of PKCε inhibition. Moreover, direct inhibition of SOD2 increases mitochondrial ROS and significantly impedes AML progression in vivo Furthermore, we report that PKCε over-expression protects AML cells from otherwise-lethal doses of mitochondrial ROS-inducing agents. Proteomic analysis reveals that PKCε may control mitochondrial ROS by controlling the expression of regulatory proteins of redox homeostasis, electron transport chain flux, as well as outer mitochondrial membrane potential and transport.Conclusions: This study uncovers a previously unrecognized role for PKCε in supporting AML cell survival and disease progression by regulating mitochondrial ROS biology and positions mitochondrial redox regulators as potential therapeutic targets in AML. Clin Cancer Res; 24(3); 608-18. ©2017 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。