Akt determines cell fate through inhibition of the PERK-eIF2α phosphorylation pathway

Akt通过抑制PERK-eIF2α磷酸化通路决定细胞命运

阅读:6
作者:Zineb Mounir, Jothi Latha Krishnamoorthy, Shuo Wang, Barbara Papadopoulou, Shirley Campbell, William J Muller, Maria Hatzoglou, Antonis E Koromilas

Abstract

Metazoans respond to various forms of environmental stress by inducing the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) at serine-51, a modification that leads to global inhibition of mRNA translation. We demonstrate induction of the phosphorylation of eIF2α in mammalian cells after either pharmacological inhibition of the phosphoinositide 3-kinase (PI3K)-Akt pathway or genetic or small interfering RNA-mediated ablation of Akt. This increase in the extent of eIF2α phosphorylation also occurred in Drosophila cells and depended on the endoplasmic reticulum (ER)-resident protein kinase PERK, which was inhibited by Akt-dependent phosphorylation at threonine-799. The activity of PERK and the abundance of phosphorylated eIF2α (eIF2αP) were reduced in mouse mammary gland tumors that contained activated Akt, as well as in cells exposed to ER stress or oxidative stress. In unstressed cells, the PERK-eIF2αP pathway mediated survival and facilitated adaptation to the deleterious effects of the inactivation of PI3K or Akt. Inactivation of the PERK-eIF2αP pathway increased the susceptibility of tumor cells to death by pharmacological inhibitors of PI3K or Akt. Thus, we suggest that the PERK-eIF2αP pathway provides a link between Akt signaling and translational control, which has implications for tumor formation and treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。