STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes

STIM1 通过结合大鼠心室肌细胞中的磷蛋白来增加 SR Ca2+ 含量

阅读:5
作者:Guiling Zhao, Tianyu Li, Didier X P Brochet, Paul B Rosenberg, W J Lederer

Abstract

In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca(2+) sensor, is unclear with respect to its cellular localization, its Ca(2+)-dependent mobilization, and its action on Ca(2+) signaling. Confocal microscopy was used to measure Ca(2+) signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca(2+) using thapsigargin (2-10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca(2+) depletion. Additionally, we found no store-operated Ca(2+) entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca(2+) content and increased SR Ca(2+) leak. These changes in Ca(2+) signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca(2+) ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca(2+) leak and that these actions are independent of store-operated Ca(2+) entry, a process that is absent in normal heart cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。