A supervised machine learning approach for the prediction of antioxidant activities of Amaranthus viridis seed

一种用于预测苋菜种子抗氧化活性的监督机器学习方法

阅读:5
作者:Babatunde Olawoye, Oladapo Fisoye Fagbohun, Oyekemi Popoola-Akinola, Jide Ebenezer Taiwo Akinsola, Charles Taiwo Akanbi

Abstract

This research aimed at modelling and predicting the antioxidant activities of Amaranthus viridis seed extract using four (4) data-driven models. Artificial Neural Network (ANN), Support Vector Machine (SVM), k-nearest Neighbour (k-NN), and Decision Tree (DT) were used as modelling algorithms for the construction of a non-linear empirical model to predict the antioxidant properties of Amaranthus viridis seed extract. Datasets for the modelling operation were obtained from a Box Behnken design while the hyperparameters of the ANN, SVM, k-NN and DT were determined using a 10-fold cross-validation technique. Among the Machine Learning algorithms, DT was observed to exhibit excellent performance and outperformed other Machine Learning algorithms in predicting the antioxidant activities of the seed extract, with a sensitivity of 0.867, precision of 0.928, area under the curve of 0.979, root mean square error of 0.184 and correlation coefficient of 0.9878. It was closely followed by ANN which was used to analyze and explain in detail the effect of the independent variables on the antioxidant activities of the seed extracts. This result affirmed the suitability of DT in predicting the antioxidant activities of Amaranthus viridis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。