Regulation of Osteosclerosis by Inoculated Cd133+ PC3 Cells in Bone-marrow Microenvironmental Niches

骨髓微环境微环境内接种Cd133+PC3细胞对骨硬化的调控

阅读:3
作者:Donghwi Kim, Youngjong Ko, Mineon Park, Bora Kim, HongMoon Sohn, Wonbong Lim

Abstract

Bone is the most common site of prostate cancer (PC) metastasis. Studies suggest that cancer stem cells (CSCs) are associated with stemness characteristics, providing some support for the concept that CSCs act as osteosclerotic precursors in bone microenvironmental niches. Here, we asked whether ectopic overexpression of CD133 maintains stability of CSCs in human PC cell lines and induces the changes of molecular features in the bone microenvironment. Ectopic overexpression of CD133 in PC3 or DU145 cells led to increased expression of ALDHA1, OCT4, and NANOG, enhanced colony-forming ability, and increased ALDH activity. In addition, micro-CT imaging, confocal microscopy, and H&E staining of mouse tissue confirmed that CD133 overexpression in PC3 and DU145 led to marked osteolytic bone tumor. However, expression of osteoblastic markers such as collagen type I, bone sialoprotein, and osteocalcin (OC) at the tumor margin of CD133-overexpressing PC3 tumors in mouse tibiae was higher than that of CD133-overexpressing DU145 tumors with osteosclerotic molecular features. In addition, expression of osteopontin (OPN) mRNA/protein by CD133-overexpressing PC3 cells was higher than that by DU145 cells. Especially, conditioned medium (CM) from PC3CD133+ cells increased osterix (OSX) activity in bone marrow stromal cells (BMSCs), resulting in increased expression of OC mRNA/protein resulted in increased staining of mineralized matrix by Alizarin red. However, CM from OPN silenced PC3CD133+ cells led to a reduction of OC mRNA and protein expression through OSX activity resulted in reduced amount of mineralized matrix. In conclusion, these findings suggest that CD133 plays a functional role in regulating CSC characteristics in PCs and modulates their abilities in which induce the osteosclerosis of BMSCs. In addition, OPN from CSCs acts as a niche component that promotes osteosclerosis by supporting osteoblastic differentiation of BMSCs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。