Epidermal growth factor receptor signalling regulates granulocyte-macrophage colony-stimulating factor production by airway epithelial cells and established allergic airway disease

表皮生长因子受体信号传导调节气道上皮细胞产生粒细胞-巨噬细胞集落刺激因子,并参与已确诊的过敏性气道疾病。

阅读:1
作者:T H Acciani ,T Suzuki ,B C Trapnell ,T D Le Cras

Abstract

Background: Airway epithelial cells (AEC) are increasingly recognized as a major signalling centre in the pathogenesis of allergic asthma. A previous study demonstrated that epithelial growth factor receptor (EGFR) signalling in AEC regulated key features of allergic airway disease. However, it is unclear what mediators are regulated by EGFR signalling in AEC, although the production of the pro-inflammatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is EGFR dependent in keratinocytes. Objectives: To determine whether EGFR signalling regulates GM-CSF production by human AEC downstream of the clinically relevant mediators house dust mite (HDM) and interleukin (IL)-17A and in a mouse model of established allergic asthma. Methods: EGFR inhibitors were used to determine whether EGFR signalling regulates GM-CSF production by cultured human AEC in response to HDM and IL-17A. The roles of EGFR ligands, p38 mitogen-activated protein kinase (MAPK) and tumour necrosis factor-alpha (TNF-α) converting enzyme (TACE) were also assessed. To determine whether EGFR regulates GM-CSF as well as key asthma characteristics in vivo, mice were chronically exposed to HDM to establish allergic airway disease and then treated with the EGFR inhibitor Erlotinib. Results: EGFR inhibition reduced HDM and IL-17A induced GM-CSF production in a dose-dependent manner in cultured human AEC. GM-CSF production also required amphiregulin, p38 MAPK signalling and protease/TACE activity. In mice with established allergic airway disease, EGFR inhibition reduced levels of GM-CSF and TNF-α, as well as airway hyperreactivity, cellular inflammation, smooth muscle thickening and goblet cell metaplasia without changes in IgE and Th1, Th2 and Th17 cytokines. Conclusions and clinical relevance: Results link HDM, IL-17A, amphiregulin, EGFR and GM-CSF in a mechanistic pathway in AEC and demonstrate that EGFR regulates GM-CSF production and the severity of established disease in a clinically relevant asthma model. These results identify the EGFR→GM-CSF axis as a target for therapeutic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。