Monoclonal antibodies against S2 subunit of spike protein exhibit broad reactivity toward SARS-CoV-2 variants

针对刺突蛋白 S2 亚基的单克隆抗体对 SARS-CoV-2 变体表现出广泛的反应性

阅读:6
作者:Shih-Han Ko, Wan-Yu Chen, Shih-Chieh Su, Hsiu-Ting Lin, Feng-Yi Ke, Kang-Hao Liang, Fu-Fei Hsu, Monika Kumari, Chi-Yu Fu, Han-Chung Wu

Background

The variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) harbor diverse spike (S) protein sequences, which can greatly influence the efficacies of therapeutics. Therefore, it would be of great value to develop neutralizing monoclonal antibodies (mAbs) that can broadly recognize multiple variants.

Conclusion

Since there are not many mAbs that can bind the S2 subunit of SARS-CoV-2 variants, our set of B-S2-mAbs may provide important materials for basic research and potential clinical applications. Importantly, our study results demonstrate that the viral S2 subunit can be targeted for the production of cross-reactive antibodies, which may be used for coronavirus detection and neutralization.

Methods

Using an mRNA-LNP immunization strategy, we generated several mAbs that specifically target the conserved S2 subunit of SARS-CoV-2 (B-S2-mAbs). These mAbs were assessed for their neutralizing activity with pseudotyped viruses and binding ability for SARS-CoV-2 variants.

Results

Among these mAbs, five exhibited strong neutralizing ability toward the Gamma variant and also recognized viral S proteins from the Wuhan, Alpha, Beta, Gamma, Delta and Omicron (BA.1, BA.2 and BA.5) variants. Furthermore, we demonstrated the broad reactivities of these B-S2-mAbs in several different applications, including immunosorbent, immunofluorescence and immunoblotting assays. In particular, B-S2-mAb-2 exhibited potent neutralization of Gamma variant (IC50 = 0.048 µg/ml) in a pseudovirus neutralization assay. The neutralizing epitope of B-S2-mAb-2 was identified by phage display as amino acid residues 1146-1152 (DSFKEEL) in the S2 subunit HR2 domain of SARS-CoV-2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。