Excess Iron Enhances Purine Catabolism Through Activation of Xanthine Oxidase and Impairs Myelination in the Hippocampus of Nursing Piglets

过量的铁通过激活黄嘌呤氧化酶增强嘌呤分解代谢并损害哺乳仔猪海马的髓鞘形成

阅读:14
作者:Peng Ji, Eric B Nonnecke, Nicole Doan, Bo Lönnerdal, Bie Tan

Background

Few studies have addressed the risk of nutritional iron overexposure in infancy. We previously found that excess dietary iron in nursing piglets resulted in iron overload in the liver and hippocampus and diminished socialization with novel conspecifics in a test for social novelty preference. Objectives: This experiment aimed to identify metabolites and metabolic pathways affected by iron overload in the liver and hippocampus of nursing piglets.

Conclusions

In nursing piglets, excess iron enhances hippocampal purine degradation through activation of XO, which may induce oxidative stress and alter energy metabolism in the developing brain.

Methods

Liver and hippocampal tissues collected from 22-d-old piglets (Hampshire × Yorkshire crossbreed; 5.28 ± 0.53 kg body weight; 50% male) that received orally 0 (NI group) or 50 mg iron/(d · kg body weight) (HI group) from postnatal day (PD) 2 to PD21 were analyzed for mRNA and protein expression and enzyme activity of xanthine oxidase (XO). Untargeted metabolomics was performed using GC-MS. Expression of myelin basic protein (MBP) in the hippocampus was determined using western blot.

Results

There were 108 and 126 metabolites identified in the hippocampus and liver, respectively. Compared with NI, HI altered 15 metabolites (P < 0.05, q < 0.2) in the hippocampus, including a reduction in myo-inositol (0.86-fold) and N-acetylaspartic acid (0.84-fold), 2 metabolites important for neuronal function and myelination. Seven metabolites involved in purine and pyrimidine metabolism (e.g., hypoxanthine, xanthine, and β-alanine) were coordinately changed in the hippocampus (P < 0.05, q < 0.2), suggesting that iron excess enhanced purine catabolism. The mRNA expression (2.3-fold) (P < 0.05) and activity of XO, a rate-limiting enzyme in purine degradation, was increased. Excess iron increased hippocampal lipid peroxidation by 74% (P < 0.05) and decreased MBP by 44% (P = 0.053). The hepatic metabolome was unaffected. Conclusions: In nursing piglets, excess iron enhances hippocampal purine degradation through activation of XO, which may induce oxidative stress and alter energy metabolism in the developing brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。