Eicosatetraynoic Acid Regulates Pro-Fibrotic Pathways in an Induced Pluripotent Stem Cell Derived Macrophage:Human Intestinal Organoid Model of Crohn's Disease

二十碳四烯酸调节诱导性多能干细胞衍生的巨噬细胞中的促纤维化途径:克罗恩病的人类肠道类器官模型

阅读:7
作者:Ingrid Jurickova, Benjamin W Dreskin, Elizabeth Angerman, Erin Bonkowski, Kentaro Tominaga, Kentaro Iwasawa, Tzipi Braun, Takanori Takebe, Michael A Helmrath, Yael Haberman, James M Wells, Lee A Denson

Aims

We previously identified small molecules predicted to reverse an ileal gene signature for future Crohn's Disease (CD) strictures. Here we used a new human intestinal organoid (HIO) model system containing macrophages to test a lead candidate, eicosatetraynoic acid (ETYA).

Background and aims

We previously identified small molecules predicted to reverse an ileal gene signature for future Crohn's Disease (CD) strictures. Here we used a new human intestinal organoid (HIO) model system containing macrophages to test a lead candidate, eicosatetraynoic acid (ETYA).

Conclusions

ETYA inhibits pro-fibrotic effects of LPS-primed macrophages upon co-cultured HIO. This model may be used in future untargeted screens for small molecules to treat refractory CD.

Methods

Induced pluripotent stem cell lines (iPSC) were derived from CD patients and differentiated into macrophages and HIOs. Macrophages and macrophage:HIO co-cultures were exposed to lipopolysaccharide (LPS) with and without ETYA pre-treatment. Cytospin and flow cytometry characterized macrophage morphology and activation markers, and RNA sequencing defined the global pattern of macrophage gene expression. TaqMan Low Density Array, Luminex multiplex assay, immunohistologic staining, and sirius red polarized light microscopy were performed to measure macrophage cytokine production and HIO pro-fibrotic gene expression and collagen content.

Results

iPSC-derived macrophages exhibited morphology similar to primary macrophages and expressed inflammatory macrophage cell surface markers including CD64 and CD68. LPS-stimulated macrophages expressed a global pattern of gene expression enriched in CD ileal inflammatory macrophages and matrisome secreted products, and produced cytokines and chemokines including CCL2, IL1B, and OSM implicated in refractory disease. ETYA suppressed CD64 abundance and pro-fibrotic gene expression pathways in LPS stimulated macrophages. Co-culture of LPS-primed macrophages with HIO led to up-regulation of fibroblast activation genes including ACTA2 and COL1A1 , and an increase in HIO collagen content. ETYA pre-treatment prevented pro-fibrotic effects of LPS-primed macrophages. Conclusions: ETYA inhibits pro-fibrotic effects of LPS-primed macrophages upon co-cultured HIO. This model may be used in future untargeted screens for small molecules to treat refractory CD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。