Background and purpose
Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+) -permeable channel with multiple modes of activation. Apigenin is a plant-derived flavone, which has potential preventive effects on the development of cardiovascular disease. We set out to explore the effects of apigenin on TRPV4 channel activity and its role in vasodilatation. Experimental approach: The effects of apigenin (0.01-30 µM) on TPRV4 channels were investigated in HEK293 cells over-expressing TRPV4, rat primary cultured mesenteric artery endothelial cells (MAECs) and isolated small mesenteric arterial segments using whole-cell patch clamp, fluorescent Ca(2+) imaging, intracellular recording and pressure myography. Key
Purpose
Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+) -permeable channel with multiple modes of activation. Apigenin is a plant-derived flavone, which has potential preventive effects on the development of cardiovascular disease. We set out to explore the effects of apigenin on TRPV4 channel activity and its role in vasodilatation. Experimental approach: The effects of apigenin (0.01-30 µM) on TPRV4 channels were investigated in HEK293 cells over-expressing TRPV4, rat primary cultured mesenteric artery endothelial cells (MAECs) and isolated small mesenteric arterial segments using whole-cell patch clamp, fluorescent Ca(2+) imaging, intracellular recording and pressure myography. Key
Results
Whole-cell patch clamp and fluorescent Ca(2+) imaging in HEK cells over-expressing TRPV4 showed that apigenin concentration-dependently stimulated the TRPV4-mediated cation current and Ca(2+) influx. In MAECs, apigenin stimulated Ca(2+) influx in a concentration-dependent manner. These increases in cation current and Ca(2+) influx were markedly inhibited by TRPV4-specific blockers and siRNAs. Furthermore, pressure myography and intracellular recording in small third-order mesenteric arteries showed that apigenin dose-dependently evoked smooth muscle cell membrane hyperpolarization and subsequent vascular dilatation, which were significantly inhibited by TRPV4-specific blockers. TRPV4 blocker or charybdotoxin (200 nM) plus apamin (100 nM) diminished the apigenin-induced dilatation.
