L-polylactic acid porous microspheres enhance the mechanical properties and in vivo stability of degummed silk/silk fibroin/gelatin scaffold

L-聚乳酸多孔微球增强脱胶丝/丝素蛋白/明胶支架的机械性能和体内稳定性

阅读:7
作者:Tian Li, Bingzhang Liu, Yuhan Jiang, Yingyue Lou, Kang Chen, Duo Zhang

Abstract

Cartilage defects are among the most difficult diseases to cure in clinic. Due to the limited regeneration capacity of chondrocytes, cartilage regeneration is very difficult. Tissue engineering is a potential strategy for cartilage regeneration. The choice of scaffold is a key factor for the successful construction of tissue engineering cartilage. In this research, we successfully constructed the silk/silk fibroin/gelatin/polylactic acid porous microspheres (S/SF/G/PLLA-PMs) scaffold, then further evaluated the physical and chemical properties and biocompatibility of the composite cartilage tissue in vitro and in vivo, also the long-term survival of the composite cartilage in large animals was carried out. The research results showed that S/SF/G/PLLA-PMs composite scaffold had good biocompatibility. The addition of L-polylactic acid porous microspheres (PLLA-PMs) could significantly enhance the mechanical strength of the scaffold and achieve a multi-level pore structure. After 4 weeks of culture in vitro, composite cartilage could be constructed. Further immunohistochemical results showed that S/SF/G/PLLA-PMs scaffold could increase the long-term stability of the composite cartilage transplantation in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。