Targeting Nuclear Mechanics Mitigates the Fibroblast Invasiveness in Pathological Dermal Scars Induced by Matrix Stiffening

靶向核力学可减轻基质硬化引起的病理性真皮疤痕中成纤维细胞的侵袭性

阅读:7
作者:Xiangting Fu, Ali Taghizadeh, Mohsen Taghizadeh, Cheng Ji Li, Nam Kyu Lim, Jung-Hwan Lee, Hye Sung Kim, Hae-Won Kim

Abstract

Pathological dermal scars such as keloids present significant clinical challenges lacking effective treatment options. Given the distinctive feature of highly stiffened scar tissues, deciphering how matrix mechanics regulate pathological progression can inform new therapeutic strategies. Here, it is shown that pathological dermal scar keloid fibroblasts display unique metamorphoses to stiffened matrix. Compared to normal fibroblasts, keloid fibroblasts show high sensitivity to stiffness rather than biochemical stimulation, activating cytoskeletal-to-nuclear mechanosensing molecules. Notably, keloid fibroblasts on stiff matrices exhibit nuclear softening, concomitant with reduced lamin A/C expression, and disrupted anchoring of lamina-associated chromatin. This nuclear softening, combined with weak adhesion and high contractility, facilitates the invasive migration of keloid fibroblasts through confining matrices. Inhibiting lamin A/C-driven nuclear softening, via lamin A/C overexpression or actin disruption, mitigates such invasiveness of keloid fibroblasts. These findings highlight the significance of the nuclear mechanics of keloid fibroblasts in scar pathogenesis and propose lamin A/C as a potential therapeutic target for managing pathological scars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。