Nuclear heterogeneous nuclear ribonucleoprotein D is associated with poor prognosis and interactome analysis reveals its novel binding partners in oral cancer

核异质性核糖核蛋白 D 与不良预后相关,相互作用组分析揭示其在口腔癌中的新结合伙伴

阅读:7
作者:Manish Kumar, Ajay Matta, Olena Masui, Gunjan Srivastava, Jatinder Kaur, Alok Thakar, Nootan Kumar Shukla, Ajoy RoyChoudhury, Meherchand Sharma, Paul G Walfish, K W Michael Siu, Shyam Singh Chauhan, Ranju Ralhan

Background

Post-transcriptional regulation by heterogeneous ribonucleoproteins (hnRNPs) is an important regulatory paradigm in cancer development. Our proteomic analysis revealed hnRNPD overexpression in oral dysplasia as compared with normal mucosa; its role in oral carcinogenesis remains unknown. Here in we determined the hnRNPD associated protein networks and its clinical significance in oral squamous cell carcinoma (OSCC).

Conclusions

Our findings suggest novel functions of hnRNPD in cellular proliferation and survival, besides RNA splicing and stability in oral cancer. Association of nuclear hnRNPD with poor prognosis in OSCC patients taken together with its associated protein networks in oral cancer warrant future studies designed to explore its potential as a plausible novel target for molecular therapeutics.

Methods

Immunoprecipitation (IP) followed by tandem mass spectrometry was used to identify the binding partners of hnRNPD in oral cancer cell lines. Ingenuity pathway analysis (IPA) was carried out to unravel the protein interaction networks associated with hnRNPD and key interactions were confirmed by co-IP-western blotting. hnRNPD expression was analyzed in 183 OSCCs, 44 oral dysplasia and 106 normal tissues using immunohistochemistry (IHC) and correlated with clinico-pathological parameters and follow up data over a period of 91 months. Kaplan-Meier survival and Cox-multivariate-regression analyses were used to evaluate the prognostic significance of hnRNPD in OSCC.

Results

We identified 345 binding partners of hnRNPD in oral cancer cells. IPA unraveled novel protein-protein interaction networks associated with hnRNPD and suggested its involvement in multiple cellular processes: DNA repair, replication, chromatin remodeling, cellular proliferation, RNA splicing and stability, thereby directing the fate of oral cancer cells. Protein-protein interactions of hnRNPD with 14-3-3ζ, hnRNPK and S100A9 were confirmed using co-IP-western blotting. IHC analysis showed significant overexpression of nuclear hnRNPD in oral dysplasia [p = 0.001, Odds ratio (OR) = 5.1, 95% CI = 2.1-11.1) and OSCCs (p = 0.001, OR = 8.1, 95% CI = 4.5-14.4) in comparison with normal mucosa. OSCC patients showing nuclear hnRNPD overexpression had significantly reduced recurrence free survival [p = 0.026, Hazard ratio = 1.95, 95% CI = 1.0-3.5] by Kaplan-Meier survival and Cox-multivariate-regression analyses and has potential to define a high-risk subgroup among OSCC patients with nodal negative disease. Conclusions: Our findings suggest novel functions of hnRNPD in cellular proliferation and survival, besides RNA splicing and stability in oral cancer. Association of nuclear hnRNPD with poor prognosis in OSCC patients taken together with its associated protein networks in oral cancer warrant future studies designed to explore its potential as a plausible novel target for molecular therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。