Glucagon-like peptide-1 analogs mitigate neuroinflammation in Alzheimer's disease by suppressing NLRP2 activation in astrocytes

胰高血糖素样肽-1 类似物通过抑制星形胶质细胞中的 NLRP2 活化来减轻阿尔茨海默病中的神经炎症

阅读:11
作者:Mengjun Zhang, Yubin Wu, Ruonan Gao, Xinwei Chen, Ruiyu Chen, Zhou Chen

Abstract

Neuroinflammation is closely linked to the pathogenesis of Alzheimer's disease (AD). Glucagon-like peptide-1 (GLP-1) analogs exhibit anti-inflammatory and neuroprotective effects; hence, we investigated whether they reduce cognitive impairment and protect astrocytes from oxidative stress. We found that 5 × FAD transgenic mice treated with the synthetic GLP-1 receptor agonist exenatide had improved cognitive function per the Morris water maze test. Immunohistochemistry, western blotting, and ELISAs used to detect inflammatory factors revealed reduced neuroinflammation in extracted piriform cortexes of exenatide-treated mice as well as lower amyloid β1-42-induced oxidative stress and inflammation in astrocytes treated with exendin-4 (the natural analog of exenatide). Adenovirus-mediated overexpression of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 2 (NLRP2) revealed that exenatide/exendin-4 function may be attributed to NLRP2 inflammasome inhibition. Collectively, our results indicate that GLP-1 analogs improve cognitive dysfunction in vivo and protect astrocytes in vitro, potentially via the downregulation of the NLRP2 inflammasome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。