Tenascin-C as a potential biomarker and therapeutic target for esophageal squamous cell carcinoma

腱糖蛋白-C 作为食管鳞状细胞癌的潜在生物标志物和治疗靶点

阅读:7
作者:Yang Liu, Li-Yan Yang, Ding-Xiong Chen, Chen Chang, Qing Yuan, Yu Zhang, Yan Cai, Wen-Qiang Wei, Jia-Jie Hao, Ming-Rong Wang

Conclusion

The established nomogram may be a promising model for survival prediction in ESCC. Reducing TNC expression enhanced the sensitivity of ESCC cells to inhibitors of Epidermal Growth Factor Receptor (EGFR) and downstream signaling pathways, providing a novel combination therapy strategy.

Methods

The expression of TNC was detected using immunohistochemistry (IHC) in 326 ESCC specimens and 50 normal esophageal tissues. Prognostic factors were determined by Cox regression analyses and were incorporated to establish the nomogram. The effects of TNC knockdown on ESCC cells were assessed in vitro and in vivo. Transcriptome sequencing (RNA-seq) and gene set enrichment analysis (GSEA) were performed to reveal signaling pathways regulated by TNC knockdown. The therapeutic significance of TNC knockdown combined with small-molecule inhibitors on cell proliferation was examined.

Purpose

To establish a prognostic model of esophageal squamous cell carcinoma (ESCC) patients based on tenascin-C (TNC) expression level and clinicopathological characteristics, and to explore the therapeutic potential of TNC inhibition.

Results

TNC protein was highly expressed in 48.77 % of ESCC tissues compared to only 2 % in normal esophageal epithelia (p < 0.001). The established nomogram model, based on TNC expression, pT stage, and lymph node metastasis, showed good performance on prognosis evaluation. More importantly, the reduction of TNC expression inhibited tumor cell proliferation and xenograft growth, and mainly down-regulated signaling pathways involved in tumor growth, hypoxia signaling transduction, metabolism, infection, etc. Knockdown of TNC enhanced the inhibitory effect of inhibitors targeting ErbB, PI3K-Akt, Ras and MAPK signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。