Downregulation of eukaryotic initiation factor 4A1 improves radiosensitivity by delaying DNA double strand break repair in cervical cancer

真核起始因子 4A1 的下调通过延迟宫颈癌 DNA 双链断裂修复提高放射敏感性

阅读:9
作者:Shanhui Liang, Xingzhu Ju, Yuqi Zhou, Yiran Chen, Guihao Ke, Hao Wen, Xiaohua Wu

Abstract

Expression of eukaryotic initiation factor 4A1 (eIF4A1) following brachytherapy has been reported to predict improved radiosensitivity and tumor-specific survival in cervical cancer. Therefore, the present study investigated the function of eIF4A1 in cervical cancer and the mechanism by which eIF4A1 regulates cervical cancer radiosensitivity. It was determined that the downregulation of eIF4A1 in HeLa and SiHa cells notably attenuated cell proliferation, in addition to repressing cervical cancer migration and invasion, and promoting cell apoptosis. In vitro and in vivo studies have demonstrated that silencing eIF4A1 improves cervical cancer radiosensitivity. Detection of γ-H2AX using western blot analysis at 0, 0.5, 1, 6 and 24 h following the exposure of cervical cancer cells to X-rays illustrated that eIF4A1-knockdown results in postponed radiation-induced DNA double strand break (DSB) repair. Overall, the results of the present study demonstrated that downregulated eIF4A1 improves cervical cancer radiosensitivity by delaying cancer cell DSB repair. In conclusion, the data indicated that eIF4A1 performs a vital role in cervical cancer progression and radiosensitivity. Therefore, eIF4A1 may be a potential therapeutic target in patients with cervical cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。