Regulation of nerve growth and patterning by cell surface protein disulphide isomerase

细胞表面蛋白二硫键异构酶对神经生长和模式的调节

阅读:9
作者:Geoffrey Mw Cook, Catia Sousa, Julia Schaeffer, Katherine Wiles, Prem Jareonsettasin, Asanish Kalyanasundaram, Eleanor Walder, Catharina Casper, Serena Patel, Pei Wei Chua, Gioia Riboni-Verri, Mansoor Raza, Nol Swaddiwudhipong, Andrew Hui, Ameer Abdullah, Saj Wajed, Roger J Keynes

Abstract

Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。