Lower citrate synthase activity, mitochondrial complex expression, and fewer oxidative myofibers characterize skeletal muscle from growth-restricted fetal sheep

生长受限的胎羊骨骼肌具有较低的柠檬酸合酶活性、线粒体复合物表达和较少的氧化肌纤维

阅读:6
作者:Jane Stremming, Eileen I Chang, Leslie A Knaub, Michael L Armstrong, Peter R Baker 2nd, Stephanie R Wesolowski, Nichole Reisdorph, Jane E B Reusch, Laura D Brown

Abstract

Skeletal muscle from the late gestation sheep fetus with intrauterine growth restriction (IUGR) has evidence of reduced oxidative metabolism. Using a sheep model of placental insufficiency and IUGR, we tested the hypothesis that by late gestation, IUGR fetal skeletal muscle has reduced capacity for oxidative phosphorylation because of intrinsic deficits in mitochondrial respiration. We measured mitochondrial respiration in permeabilized muscle fibers from biceps femoris (BF) and soleus (SOL) from control and IUGR fetal sheep. Using muscles including BF, SOL, tibialis anterior (TA), and flexor digitorum superficialis (FDS), we measured citrate synthase (CS) activity, mitochondrial complex subunit abundance, fiber type distribution, and gene expression of regulators of mitochondrial biosynthesis. Ex vivo mitochondrial respiration was similar in control and IUGR muscle. However, CS activity was lower in IUGR BF and TA, indicating lower mitochondrial content, and protein expression of individual mitochondrial complex subunits was lower in IUGR TA and BF in a muscle-specific pattern. IUGR TA, BF, and FDS also had lower expression of type I oxidative fibers. Fiber-type shifts that support glycolytic instead of oxidative metabolism may be advantageous for the IUGR fetus in a hypoxic and nutrient-deficient environment, whereas these adaptions may be maladaptive in postnatal life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。