RNA Sequencing Exposes Adaptive and Immune Responses to Intrauterine Growth Restriction in Fetal Sheep Islets

RNA 测序揭示胎儿绵羊胰岛对宫内生长受限的适应性和免疫反应

阅读:6
作者:Amy C Kelly, Christopher A Bidwell, Fiona M McCarthy, David J Taska, Miranda J Anderson, Leticia E Camacho, Sean W Limesand

Abstract

The risk of type 2 diabetes is increased in children and adults who exhibited fetal growth restriction. Placental insufficiency and intrauterine growth restriction (IUGR) are common obstetrical complications associated with fetal hypoglycemia and hypoxia that reduce the β-cell mass and insulin secretion. In the present study, we have defined the underlying mechanisms of reduced growth and proliferation, impaired metabolism, and defective insulin secretion previously established as complications in islets from IUGR fetuses. In an IUGR sheep model that recapitulates human IUGR, high-throughput RNA sequencing showed the transcriptome of islets isolated from IUGR and control sheep fetuses and identified the transcripts that underlie β-cell dysfunction. Functional analysis expanded mechanisms involved in reduced proliferation and dysregulated metabolism that include specific cell cycle regulators and growth factors and mitochondrial, antioxidant, and exocytotic genes. These data also identified immune responses, wnt signaling, adaptive stress responses, and the proteasome as mechanisms of β-cell dysfunction. The reduction of immune-related gene expression did not reflect a change in macrophage density within IUGR islets. The present study reports the islet transcriptome in fetal sheep and established processes that limit insulin secretion and β-cell growth in fetuses with IUGR, which could explain the susceptibility to premature islet failure in adulthood. Islet dysfunction formed by intrauterine growth restriction increases the risk for diabetes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。